The Structural Dependence of the Inductive Effect. Part IV.¹ The Calculation of Vicinal Substituent Effects upon ¹⁹F Shielding in Freely-rotating Fluoroethanes and Higher Fluoroalkanes

By L. Phillips * and V. Wray, Organic Chemistry Department, Imperial College of Science and Technology, London SW7 2AY

The calculational procedure applied previously to geminal and directly bonded substituent effects upon n.m.r. shielding is extended to account for the influence of vicinal substituents. The agreement with experiment is good (±3.4 p.p.m.) for situations where there is rotational averaging between conformations of equal energy, but in other cases conformational preference causes significant deviations.

ATTEMPTS to rationalise the shielding of fluorine nuclei in aliphatic fluorocarbons have not generally been successful. Substituted methanes have been discussed recently by us, but the effects of vicinal substituents in fluoroethanes and higher alkanes are not understood. Feeney, Sutcliffe, and Walker² have suggested that the variations observed in the chemical shift of the fluorine nuclei in compounds of the type CF₃·CXYZ can be accounted for by variations in the magnitude of the van der Waals fields due to the groups X, Y, and Z; the approach is reasonably successful for situations where X, Y, and Z are halogens, but breaks down completely when one or more is hydrogen. A similar situation arises if the approach of Schaefer and his co-workers³ is adopted, and attempts are made to correlate the shielding with the empirical parameter $Q = \alpha_i I_i / r_i^3$ ($\alpha_i = \text{polarisability}$ of a substituent i, I_i is the first ionisation potential, and r_i is the average distance of the substituent *i* from the fluorine nucleus). Emsley and Phillips⁴ discussed the shielding of fluorine nuclei in a variety of halogenated ethanes in which separate rotational isomers have been 'frozen out,' ^{5,6} and have shown that the suggested origin of the substituent effects in changes in van der Waals fields is almost certainly incorrect.

It has been possible however to rationalise the effects of CH_3 and CF_3 groups upon ¹⁹F shielding in molecules of the type CF_3R , CF_2R_2 , and CFR_3 ($R = CH_3$ or CF_3) in terms of the new theory of inductive effects; 7 since almost all ¹⁹F chemical shifts of compounds of the type CF_3 ·CXYZ lie within the limits of the shifts of CF_3 ·CF₃ $(+63 \text{ p.p.m. from CFCl}_3)$ and CF_3CH_3 (+91 p.p.m. from)CFCl₂) it seems possible that the theory can be extended to cover the effects of substituents which are vicinal to the observed nucleus.

The data have been taken from references 4 and 8. Chemical shifts are taken from ambient-temperature spectra except where indicated, and all shifts are referred to CFCl₃.

RESULTS AND DISCUSSION

Consider a molecule $C^1(abF) \cdot C^2(efg)$, in which the substituents a, b, e, f, and g are as yet unspecified and

Part III, L. Phillips and V. Wray, preceding paper.
 J. Feeney, L. H. Sutcliffe, and S. M. Walker, Mol. Phys., 1966, 11, 117.

³ F. Hruska, H. M. Hutton, and T. Schaefer, Canad. J. Chem., 1965, 43, 2392.

the shielding of the F nucleus is to be observed. We adopt the approach described previously, and suggest that the shielding of the fluorine nucleus is proportional to the difference in the effective electronegativities of F and the C to which it is directly bonded. The effective electronegativities are Huggins values which are modified by a variety of mutual interactions between all groups in the molecule. In addition to interactions discussed previously⁷ we must consider those due to the groups e, f, and g. The new perturbations may be symbolised as follows: (i) ' Primary vicinal interactions.' These express the direct perturbation upon the electronegativity of a substituent by vicinal delocalisation⁹ between it and the perturbing group. The degree of vicinal delocalisation is a cosine function of the dihedral angle between the two species⁹ [this perturbation between two groups i and j may be written as equation (1)].

$$P_{\mathbf{v}\mathbf{1}}^{ij} = k_{\mathbf{v}\mathbf{1}}^{ij} E_i E_j \cos \theta_{ij} \tag{1}$$

(ii) 'Secondary vicinal interactions.' These are analogous to the secondary geminal interactions discussed earlier⁷ and express the perturbation to the electronegativity of a group caused by vicinal delocalisation between two other groups. A cosine variation is again to be expected [the perturbation may be written as equation (2)]. This is felt by groups other than i and j,

$$P_{\mathbf{y}2}^{ij} = k_{\mathbf{y}2}^{ij} E_i E_j \cos \theta_{ij} \tag{2}$$

and it is necessary to differentiate between a perturbation upon C(1) (P_{r2}^{ij}) and upon the substituents bonded to it (a, b, and F, $P_{\mathbf{y}\mathbf{2}'}^{ij}$).

It is possible to envisage ' tertiary ' interactions such as those between C(2) and its substituents e, f, and g which result in a perturbation to the electronegativity of the substituents upon C(1) (a, b, and F). It is felt that these will, however, be negligible and they will not be considered in the treatment that follows.

With the terminology outlined above and previously,⁷ it is now possible to extend the treatment to the present situation; following equation (17) of ref. 7 the shielding of fluorine in the molecule $C^{1}(abF) \cdot C^{2}(efg)$ can be written

⁴ J. W. Emsley and L. Phillips, 'Progress in Nuclear Magnetic Resonance Spectroscopy,' ed. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, vol. 7, Pergamon Press, Oxford, 1971, p. 95.

⁵ R. A. Newmark and C. H. Sederholm, J. Chem. Phys., 1963, 39, 3131.
⁶ R. A. Newmark and C. H. Sederholm, J. Chem. Phys.,

<sup>1965, 43, 602.
7</sup> L. Phillips and V. Wray, J. Chem. Soc. (B), 1971, 2068.
⁸ F. J. Weigert, M. B. Winstead, J. I. Garrels, and J. D. Roberts, J. Amer. Chem. Soc., 1970, 92, 7359.
⁹ J. A. Pople and D. P. Santry, Mol. Phys., 1963, 7, 269.

explicitly. If there is free rotation about the C(1)-C(2) bond and all conformations are equally probable then the terms involving cosines of dihedral angles vanish and the equation becomes (3).

$$\begin{aligned} \sigma &= \sigma_0 + k' \{ E_0 (1 + k_1^{\text{Ca}} E_{\text{a}} + k_2^{\text{Cb}} E_{\text{b}} + k_3^{\text{CC}} E_0) + \\ E_F (-1 + k_5^{\text{aF}} E_{\text{a}} + k_6^{\text{DF}} E_{\text{b}} + k_7^{\text{OF}} E_0) + E_0 (k_8^{\text{Cb}} E_{\text{b}} + \\ k_9^{\text{Ca}} E_{\text{a}}) + E_b k_{10}^{\text{ba}} E_{\text{a}} + E_c [k_{10}^{\text{cd}} E_{\text{e}} + k_{12}^{\text{CC}} E_{\text{f}} + k_{13}^{\text{CC}} E_{\text{g}}] \} \end{aligned}$$
(3)

The constants $k_1 - k_{10}$ have the same significance as before but k_{11} , k_{12} , and k_{13} are new and describe the net

an expression (4) can be written for the chemical shift from $CFCl_{2}$.

$$\begin{array}{l} \Delta_{\text{Oab}\textit{F},\text{Cefg}}^{\text{OFCl}_{\text{b}}} = 154 \cdot 12 \, \left(9 \cdot 45 \, - \, E_{\text{a}} \, - \, E_{\text{b}} \, - \, E_{\text{C}}\right) \, - \\ 771 \cdot 08 \, - \, k' k^{\text{ab}} E_{\text{a}} E_{\text{b}} \, - \, k' k^{\text{bO}} E_{\text{b}} E_{\text{C}} \, - \, k' k^{\text{aO}} E_{\text{a}} E_{\text{C}} \, - \\ K(E_{\text{e}} + E_{\text{f}} + E_{\text{g}}) \quad (4) \end{array}$$

The first situation which lends itself to examination is when a = b = F, and e = f = g = Z. In this case all conformations are equally populated and equal distortion of bond angles will ensure that in any conformation the

TABLE 1

Comparison of observed and calculated 19 F chemical shifts in CF ₃ -compounds where there is rotational	ıl
averaging between conformations of equal energy	

	Observed ^a shift	Calculated <i>*</i> shift			Observed ^a shift	Calculated ^a shift
(a) Compound	(p.p.m.)	(p.p.m.)	Compou	nd	(p.p.m.)	(p.p.m.)
$\begin{array}{c} CF_3 \cdot CF_3 \stackrel{b}{\rightarrow} \\ CF_3 \cdot CCl_2 I \\ CF_3 \cdot CCl_2 \stackrel{b}{\rightarrow} \\ CF_3 \cdot CF \\ CF_3 \cdot CF \\ CF_3 \cdot CF_2 I \\ CF_3 \cdot CF_2 I \\ CF_3 \cdot CF_2 OF \\ CF_3 \cdot CF_2 NF_2 \\ CF_3 \cdot CF_2 NF_2 \\ CF_3 \cdot CF_2 CF_2 \\ CF_3 \cdot CF(OF)_2 \end{array}$	$\begin{array}{c} 91\\81\\82\\84\\77\\85\\76\cdot8\\87\\67\cdot1\\82\\98\\82\\120\\79\\241\\77\cdot4\\111\cdot9\end{array}$	$\begin{array}{c} 92\cdot 2\\ 77\cdot 0\\ 79\cdot 8\\ 82\cdot 8\\ 83\cdot 9\\ 80\cdot 4\\ 85\cdot 3\\ 70\cdot 4\\ 90\cdot 0\\ 98\cdot 7\\ 87\cdot 5\\ 107\cdot 6\\ 73\cdot 4\\ 241\cdot 2\\ 87\cdot 8\\ 109\cdot 9\end{array}$	$CF_3 \cdot CH_3 \bullet$ $CF_3 \cdot CHBn$ $CF_3 \cdot CHIC CF_3 \cdot CHICCF_3 \cdot CHIECF_3 \cdot CF_2HCF_3 \cdot CH_2ECF_3 \cdot CF_2CH_2CCF_3 \cdot CF_1SCF_3 \cdot CF_2N$	CI I I F GO ₂ F CO	$\begin{array}{c} 63\\ 76\\ 79\\ 85\\ 175\\ 88\\ 140\\ 69\\ 72\\ 75\\ 89\\ \end{array}$	$\begin{array}{c} 64\\ 73{\cdot}4\\ 71{\cdot}7\\ 82{\cdot}9 & 175\\ 82{\cdot}8 & 139{\cdot}2\\ 68{\cdot}1\\ 69{\cdot}2\\ 74{\cdot}7\\ 87{\cdot}5\end{array}$
$CF_3 \cdot CF_2 \cdot CF_3 \stackrel{b}{\leftarrow} CF_3 \cdot CFBr \cdot CF_3$ $CF_3 \cdot CFI \cdot CF_3$ $CF_3 \cdot CH_2 \cdot CH_3$ $CH_3 \cdot CF_2 \cdot CH_3$ $(CF_3)_2 CBr SBr$ $(CF_3)_2 CCISCI$ $(CF_3)_2 CCISCI$ $(CF_3)_2 CIOPF_2$ $(CF_3)_2 CIOPF_2$ $CF_3 \cdot CFNF_2 \cdot CF_3$ $CF_3 \cdot CH(OH) \cdot C(CH_3)_2$ $CF_3 \cdot CH_2 \cdot CHCISi(CH_3)_3$	$\begin{array}{c} c & 131{\cdot}5\\ 78 & d\\ 78 & d\\ 70 & 85\\ 69 & 76\\ 76 & 77{\cdot}8\\ 74{\cdot}5\\ 85 & 113\\ 71{\cdot}7\\ 65{\cdot}5\\ \end{array}$	$\begin{array}{c} c & 131\cdot 5\\ 79\cdot 8 & d\\ 78\cdot 1 & d\\ 66\cdot 2\\ 75\\ 71\cdot 7\\ 72\cdot 8\\ 77\cdot 6\\ 75\cdot 9\\ 87\cdot 5 & 107\cdot 6\\ 73\cdot 4\\ 66\cdot 2\end{array}$	$\begin{array}{c} CF_3 \cdot CHF \cdot \\ CF_3 \cdot CFOI \\ CF_3 \cdot CH_2 \cdot \\ CF_3 \cdot CH_2 \cdot \\ (CF_3)_2 CH1 \\ CF_3 \cdot CH_2 \cdot \\ CF_3 \cdot CH_2 \cdot \\ CF_3 \cdot CH_2 \cdot \\ CF_3 \cdot CH2 \\ CF_3 \cdot CHC1 \\ CF_3 \cdot CHC1 \\ CF_3 \cdot CC1_2 \cdot \\ CF_3 \cdot \\ CF_3 \cdot CC1_2 \cdot \\ CF_3 \cdot$	CF_{3} CF_{3} CF_{2} $CH_{2}:Si(CH_{3})_{3}$ $P(O)(OC_{2}H_{3})_{2}$ $HCI:SiCI_{3}$ $CCI_{2}:SiCI_{3}$ $CCI_{3}:SiCI_{3}$ $CI_{3}:SiCI_{3}$ $SICI_{3}:SiCI_{3}$ $CI_{3}:SiCI_{3}$ $SICI_{3}:SiCI_{3}$ $CI_{3}:SiCI_{3}$ $SICI_{3}:SiCI_{3}$ S	$76.6 d \\ 75.6 d \\ 64 \\ 77.6 \\ 62 \\ 65.1 \\ 59.4 \\ 77.3 \\ 65.8 \\ 69.3 \\ 75.6 \\ 190 \\ n.s. = 4.6)$	$\begin{array}{ccccc} 75\cdot7 & d\\ 82\cdot8 & d\\ 66\cdot2 \\ 73\cdot4 \\ 65\cdot4 \\ 66\cdot2 \\ 66\cdot2 \\ 71\cdot5 \\ 71\cdot5 \\ 71\cdot5 \\ 76\cdot7 \\ 75\cdot6 \\ 182\cdot3 \end{array}$
(b) Compound type	No	, of ounds	Observed shift	Average observed	l Calcula	ted shift
CE CE CE	comp	7	1 ange (p.p.m.)	sinte (p.p.m.) 29.2	Shirt	.P.P.m.)
CF ₃ ·CF ₂ ·CR ₂	J	5	64-70	65.7	6	5 6·2
CF ₃ ·CF ₂ ·SeR	1	2	$82 - 85 \cdot 4$	83.9	8	4.4
(CF ₃) ₂ CFSR		6	74-80	75.4	7	6.9
$CF_3 \cdot C(CR_3)(OR)(NR)$		8	$72 \cdot 3 - 85$	78.3	7	8.1
$CF_3/2CHSR$ $CF_3CF(CR_3)(NR_3)$		5	72.8 - 79.3	76.8	8	7·5 0·3
$(CF_3)_2C(SR)_2$ or $(CF_3)_2C$	S-R-S	4	72-77	74.5	6	9.0
$(CF_3)_{\circ}C(NR_{\circ})_{\circ}$ or (CF_{\circ})	CN=R=N	5	6984	77.2	7	5.7
(CF ₃) ₂ CHNR ₂	-	2	65 - 78	72.5	7	1.0
$CF_3 \cdot CFI \cdot CF_2 \cdot CR_3$		2	75	75	7	8.1
CI'3 CH(OK) CK3		8	72.3-82.4	79.4	7	3.4
	(No	0. or shifts = 16	52, r.m.s. = 3.0).			

⁶ Chemical shifts are to be read for each group in a compound from left to right. Positive values are to high field of $CFCl_3$. ^b Compound used in the calculation of an interaction constant. ^c Chemical shift in Table 2. ^d Chemical shift in Table 3. ^e Average shift of all recorded conformer shifts (not at ambient temperature). ^f Shift not calculated as k^{HX} not known.

effect upon the electronegativities of F and C(1) of interactions between the groups e, f, and g and C(1) and C(2). The difference in shielding between the fluorine in this molecule and in a halogenated fluoromethane reference may now be deduced, and by making the assumptions about equality of certain constants described earlier 1,7 dihedral angles are 60 or 180°. Substitution of the known values of certain parameters ⁷ into equation (4) $(E_{\rm a} = E_{\rm b} = E_{\rm F} = 3.90; \quad E_{\rm 0} = 2.60; \quad k'k^{\rm ab} = 25.91)$ gives expression (5).

$$\Delta_{\rm OFF_3 \cdot CZ_3}^{\rm CFCl_3} = -523.40 - 20.28 k' k^{\rm FC} - 3 K E_Z$$
 (5)

Three suitable compounds are available for examination, namely those in which Z = H, Cl, or F, *i.e.*, CF₃·CH₃, CF₃·CCl₃, and CF₃·CF₃. The chemical shifts of these compounds (from CFCl₃) are listed in Table 1, and enable values of $k'k^{\text{FC}} (= -27 \cdot 16)$ and $K (= -5 \cdot 54)$ to be deduced.

Provided that angular distortion is not too great, it should now be possible to calculate the chemical shift from $CFCl_3$ of the fluorine nuclei in any compound CF_3 ·CXYZ by use of expression (6). (In this situation,

$$\Delta_{OF_{s} \cdot OXYZ}^{OFCl_{s}} = 27 \cdot 40 + 5 \cdot 54(E_{X} + E_{Y} + E_{Z}) \quad (6)$$

all conformations are equally populated.)

RCH, CFH CH, Ř

The chemical shifts of CF_3 groups in 204 compounds of this type have been calculated from equation (6) and are compared with experimentally observed values in Tables 1(a) and (b). The agreement is very good, and the r.m.s. deviation (3·3 p.p.m.) is within experimental error due to solvent effects, referencing procedures, and temperature variation. For composite substituents such as $-NR_2$, -SR, *etc.*, the Huggins electronegativity of the atom bonded to C(2) (N, S) is used, and the method is applicable to a wide variety of such situations.

It is possible to envisage other situations in which molecular symmetry dictates equal population of conformers. A collection of these data are in Table 2, and the chemical shifts are calculated from equations (4) or (7) and compared with experimental results. For these

TABLE 2

Comparison of observed and calculated ¹⁹F chemical shifts in compounds where there is rotational averaging between conformations of equal energy

	Observed shift	Calculated shift
Compound	(p.p.m.)	(p.p.m.)
$CF_{2}H \cdot CH_{3}$	110	111.0
$CF_{2}H \cdot CF_{3}$	140	139.2
$CFH_2 \cdot CH_3$	213	213
$CF_3 \cdot CFBr \cdot CF_3$	144	143.7
CF ₃ ·CFI·CF ₃	147	147.6
CF ₃ ·CFH·CF ₃	214.7	211.0
CF ₃ ·CFOF·CF ₃	137.4	137.4
CF ₂ Cl·CH ₃	47	50.9
$CF_2Cl \cdot CCl_3$	$65 \cdot 1$	66.7
$CF_{2}Br \cdot CH_{3}$	37	47.4
$CF_2OF \cdot CCl_3$	91.6	86.3
(No. of	shifts $= 11$, r.m.s. $=$	· 3·9).

calculations in propane and higher alkanes it is necessary to evaluate $k'k^{\text{HO}} (= -31 \cdot 19)$ and $k'k^{\text{OO}} (= -24 \cdot 88)$ and an additional equation (7) can be derived. All other $\Delta_{\text{OPED}_{4},\text{OPE}_{2},\text{OPED}_{4}}^{\text{OPED}_{4}} = 154 \cdot 12 \cdot (9.45 - E_{4} + 2E_{4})$

$$\begin{array}{l} \sum_{0 \text{ gkm} \cdot \text{OF} a \cdot \text{Oef} g} = 154 \cdot 12 \ (9 \cdot 45 - E_a - 2E_0) - \\ 771 \cdot 08 - 2k' k^{a0} E_a E_0 - k' k^{CC} E_C E_0 - \\ K(E_e + E_f + E_g + E_k + E_1 + E_m) \end{array}$$
(7)

TABLE 3

Comparison of observed and calculated ¹⁹F chemical shifts in compounds where there may be conformational preference

(a) Compound	Observed shift « (p.p.m.)	Calculated shift (p.p.m.)	Compoi	Observed shif	t ^a Calculated shift (p.p.m.)
(a) Compound $CF_2CI-CHFBr$ $CF_2CI-CFCI_2$ $CF_2CI-CFCI_2$ CF_2CI-CF_2CI CF_2CI-CF_2CI CF_2CI-CF_2CI CF_2CI-CF_2I CF_2Br-CH_2CI CF_2Br-CH_2CI $CF_2Br-CHFCI$ $CF_2Br-CFBrI$ $CF_2Br-CFBrCI$ $CF_2Br-CFBrCI$ $CF_2Br-CFBrCI$ $CF_2CF_2CF_2CI$ $CF_3-CF_2-CF_2I$	$\begin{array}{c} (\text{p.p.m.}) \\ 67 \\ f \\ 68 \\ f \\ 67 \cdot 9 \\ 71 \cdot 6 \\ 69 \cdot 3 \\ 96 \\ 67 \cdot 0 \\ 54 \cdot 5 \\ 60 \cdot 6 \\ 64 \cdot 6 \\ 54 \cdot 5 \\ 60 \cdot 6 \\ 63 \cdot 5 \\ f \\ 61 \cdot 0 \\ f \\ 62 \cdot 3 \\ 72 \cdot 1 \\ 70 \cdot 6 \\ 82 \cdot 8 \\ c \\ 127 \\ 93 \cdot 9 \\ c \\ 116 \cdot 7 \\ 127 \\ 2 \\ c \\ 134 \\ 138 \\ c \\ 128 \\ 244 \\ 80 \\ 193 \\ 71 \\ 116 \\ 63 \\ 72 \cdot 8 \\ 167 \cdot 2 \\ 86 \cdot 1 \end{array}$	$\begin{array}{c} (\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{m} \cdot \mathbf{n}) \\ 64 \cdot 5 f \\ 65 \cdot 6 f \\ 70 \cdot 9 76 \cdot 2 \\ 66 \cdot 9 \\ 75 \cdot 0 \\ 77 \cdot 0 94 \cdot 6 \\ 72 \cdot 3 66 \cdot 3 \\ 52 \cdot 7 \\ 62 \cdot 1 f \\ 61 \cdot 0 f \\ 66 \cdot 3 75 \cdot 5 \\ 65 \cdot 2 77 \cdot 9 \\ c 127 \cdot 3 c \\ c 124 \cdot 6 63 \cdot 2 \\ c 129 \cdot 3 91 \cdot 5 \\ c 126 \cdot 8 100 \cdot 4 \\ c 122 \cdot 1 132 \cdot 0 \\ c 112 \cdot 7 234 \\ 75 \cdot 6 185 \cdot 2 \\ 78 \cdot 1 143 \cdot 4 65 \cdot 1 \\ 80 \cdot 3 140 \cdot 2 86 \cdot 8 \end{array}$	Compose CF_2Br-CF_2Br $CF_2H\cdotCF_2H$ $CF_2H\cdotCF_2OF$ $(CF_2NF_2)_2$ $CFCl_2\cdotCFH_2$ $CFCl_2\cdotCFL_2$ $CFCl_2\cdotCFCl_2$ $CFCl_2\cdotCBr_2CFCl_2$ $CFCl_2\cdotCBr_2CI$ $CFCIBr-CBr_2C$ $CFCIBr-CBr_2CI$ $CFH_2\cdotCFHBr$ $CF_2\cdotCI-CF_2\cdotCH$ $CF_2\cdotCI-CF_2\cdotCF$ $CF_2\cdotCI-CF_2\cdotCF$ $CF_2CI-CF_2\cdotCF$ $CF_2Br-CF_2\cdotCF$ $CF_2Br-CF_2\cdotCF$ $CF_2H\cdotCF_2\cdotCH$ $CF_2H\cdotCF_2\cdotCH$ $CF_2H\cdotCF_2\cdotCH$ $CF_2H\cdotCF_2\cdotCH$ $CF_2H\cdotCF_2\cdotCH$ $CF_2H\cdotCF_2\cdotCH$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & \text{Calculated simit} \\ & (\text{p.p.m.}) \\ & 70 \cdot 4 \\ & 129 \cdot 8 \\ & 137 \cdot 0 & 89 \cdot 3 \\ & 102 \cdot 8 \\ & 61 \cdot 6 & 232 \cdot 9 \\ & 78 \cdot 1 & 90 \cdot 4 \\ & 72 \cdot 1 \\ & 66 \cdot 9 \\ & 65 \cdot 7 \\ & 65 \cdot 6 \\ & 66 \cdot 7 \\ & 59 \cdot 9 \\ & 210 \cdot 5 \\ & 226 \cdot 6 \\ & f \\ & c & 114 \cdot 9 \\ & c & 123 \cdot 2 \\ & c & 108 \cdot 5 & 234 \cdot 0 \\ & c & 106 \cdot 9 \\ & c & 103 \cdot 2 & 234 \cdot 0 \\ & c & 103 \cdot 2 & 234 \cdot 0 \\ & c & 103 \cdot 2 & 234 \cdot 0 \\ & c & 103 \cdot 2 & 234 \cdot 0 \\ & c & 106 \cdot 5 \\ & f \\ & c & 106 \cdot 5 \\ & f \\ & c & 107 \cdot 4 \\ & f \\ & c & 108 \cdot 5 \\ & f \\ & c & 112 \cdot 7 & 132 \cdot 0 \end{array}$
$CF_3 \cdot CH_2 \cdot CHFI$ $CF_3 \cdot CFC1 \cdot CC1_2 CF_3$ $(CF_3 CF_2)_2 CF \cdot [CF_2]_2 \cdot CF$ $(CF_3)_2 \cdot CF \cdot CF(CF_3)_2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 66{\cdot}2 & 149{\cdot}0 \\ 80{\cdot}9 & 126{\cdot}7 & 76{\cdot}7 \\ 160{\cdot}6 \\ 167{\cdot}8 \end{array}$	$CFH_2 \cdot [CH_2]_4 \cdot CFH_2 \cdot CH_2 \cdot O \cdot (CFH_2 \cdot CH_2 \cdot O) + CH(CF_3)_2 + CF \cdot CF$	CH ₃ 219 CF ₂ 227 64	$215 \cdot 2$ $220 \cdot 2$ $68 \cdot 4$ $167 \cdot 8$
			(0/2 L	(No. of shifts = 78 , r.m.	s. = 10.8)
(b) Compound type	N	o. of compounds	Observed shift range (p.p.m.)	Average observed shift (p.p.m.)	Calculated shift shift (p.p.m.
CF ₂ Br·CF ₂ ·CI CF ₂ Cl·CR ₂ ·CI CF ₂ H·CF ₂ ·CF ₂ ·C	R ₃ CR ₃ CR CF CF	$3 \\ 6 \\ 4 \\ 56 \\ 27$	$\begin{array}{r} 62 66 \cdot 7 \\ 59 \cdot 2 71 \cdot 2 \\ 137 139 \\ 119 130 \\ 116 - 120 \end{array}$	$ \begin{array}{c} 64.9\\ 66.6\\ 138.3\\ 126.1\\ 123.2 \end{array} $	$\begin{array}{c} 68{\cdot}5\\ 72{\cdot}0\\ 132{\cdot}0\\ 124{\cdot}3\\ 117{\cdot}1 \end{array}$

(No. of shifts = 102, r.m.s. = 9.9).

6

For footnotes see Table 1.

 $148 \cdot 5 - 190 \cdot 0$

180.63

158.9

constants have been established previously, and the agreement with experiment is of the usual precision.

In many situations, the conformations arising from rotation about the C(1)-C(2) bond will be of different energies. For ethane derivatives the barrier to rotation is sufficiently low to ensure that, at room temperature, there is rapid rotation and a Boltzmann distribution between the different possible conformers; the observed spectrum is the weighted average of the spectra due to the different isomers. For such a situation the approximations leading to equation (4) will not hold, *i.e.*, the cosine terms expressing vicinal interactions will not average to zero. It must be expected therefore that when the chemical shifts of ¹⁹F in such molecules are calculated by use of equation (4) they will show larger than usual discrepancies from the observed values. It will be instructive to examine the situation, however, in order to observe the importance of the cosine-dependent terms, and Table 3(a) and (b) compares calculated and observed chemical shifts for a variety of weightedaverage situations. The overall r.m.s. deviation is large (10.8 p.p.m.) and indicates that conformational preference in rotation about a C-C bond may be responsible for chemical-shift variations of ± 7 p.p.m. If the angularly dependent terms were to be elucidated, then this would present a powerful tool for studying conformational effects in fluorinated systems.

[1/950 Received, June 10th, 1971]